
AD -A2 4 913Form Approved
-AD-A284 913 GE

S(lGE OMB No. 0704-0188

Public reporthng burd(~ Iponse, including thle iic for reviewing InstructiOns. seatching eslisong data sourceS.
gaIrherny jnd maintli SenronioN $•1rd comminrents re' rrdinq this burden cs$itnile or any oilrhe aipedt of this
Collecrion of Inaiomati uarleil Services. Direclorate ?ur Infloirnton Oper.tJioii rid Aeposts. 12 5 CIler• on

Da 'I, I figh. ay . Suite I dgel. Paperwork Reduction Project (0/040 IOUJ). Walhington,)C 2050 J

1. AGENCY USE rutjs uilt 3. REPORT TYPE AND DATrS COV5lEFD
J SpteMber lqQ4 ecn1a Report, 1/1/94 -6/30/94

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

ADAPTIVE-DECISION MAKING AND COORDINATION IN NO0014-93-1-0912
VARIABLE STRUCTURE ORGANIZATIONS

6. AUTHOR(S)

Alexander H. Levis

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Center of Excellence in Conmmand, Control, Communications GMU/C31-153-IR
and Intelligence

George Mason University
Fairfax, Virginia 22030

9. SPOIJSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/ MONITORING
AGENCY REPORT NUMBER

Office of Naval Research
Arlington, Virginia 22217-5000 C

11. SUPPLEMENTARY NOTES ., ,3CT•.

siP -,7 1994

12a. DISTRIBUTION/AVAILABILITY STATEMENT VA 12b. DISTRIBUTION CODE

unlimited

13. ABSIRACT (Maximum 200 words)

Progress in research on coordination in distributed decision making
organizations with variable structure is reported. The problem of
consistency and completeness of the set of decision rules used by an
organization is addressed by modeling the rule base by a Colored Petri
Net and then analyzing the static and dynamic behavior of the net. The
design problem is addressed by (a) focusing on algorithms that relate
structural properties of' the Petri Net model to behavioral characteristics;
and (b) by incorporating design requirements in the Lattice algorithm.

'K94-30756

9 4 9 2 P 0 8 II083II Bl l~ll i1111 I!1
14. SUBJECT TERMS 15. NUMBER OF PAGES

37
Decision making; Organization theory; Coordination - 16. PRICE CODE

Colored Petri Nets; Rule based systems

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF TIllS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified UL

SJ5N 7540-01-280-5500 Standard Form 298 (Rev. 2-89)
PrNeirrbed by ANSI Sid 11'1.1I-

,t r

CENTER OF EXCELLENCE IN
COMMAND, CONTROL, COMMUNICATIONS AND INTELLIGENCE

GEORGE MASON UNIVERSITY
Fairfax, Virginia 22030

SEMIANNUAL TECHNICAL REPORT

for the period

I January 1994- 30 June 1994

for

ADAPTIVE DECISION MAKING AND COORDINATION
IN

VARIABLE STRUCTURE ORGANIZATIONS

Grant Number N00014-93-1-0912
Accesion For

NTIS CRA&I
DTIC TAB
Unannouiced LI
Justification ----.... -------...............

By - --
Di-t' ibution I

Availability Codes

Avail and / or
Dist Special

Submitted to Submitted by:
Dr. W. S. Vaughan, Jr. (3 copies)
Office of Naval Research
800 North Quincy Street Alexander H. Levis
Arlington, Virginia 22217-5000 Principal Investigator

Copies to:
Director, Naval Research Laboratory September, 1994
Administrative Grants Office. ONR
Defense Technical Information Center Report #: GMU/C31- 153-IR

I !

1. PROGRAM OBJECTIVES

The objective of this research, as described in the proposal and the previous progress report, is
the investigation of several issues related to coordination in organizations. In particular, an
organization is coordinated through direct and indirect means. The direct means includes the set
of decision rules that the organization members use and the commands that they issue to each
other. Indirect means include the dissemination of information within the organization; for
example, organization members may share information or they may inform each other as to the
actions they plan to take or decisions they have made. Coordination becomes a complex issue
in variable structure organizations. Not only do the decision rules and the information
architecture have to work for each fixed structure, but the designer has to deal with the
problem, a metaproblem, of coordinating the variability. This becomes a particularly difficult
problem in organizations that exhibit substantial complexity arid redundancy in their
information structure. The redundancy is necessary both for robustness and for flexibility and
reconfigurability. In order to address these problems two main tasks were defined; they are
described in the next section. In addition, some basic work in algorithms and Colored Petri
Nets needs to done to develop tools and techniques for supporting the analysis and design.

2. STATEMENT OF WORK

The statement of work, as outlined in the proposal, is given below.

Task 1: Consistency and Completeness in Distributed Decision Making

Develop a methodology for analyzing and correcting the set of decision rules used by an
organization with distributed decision making. The methodology is to be based on the
modeling of the set of decision rules in the form of a Colored Petri Net and on the
analysis of the net using S-invariant and Occurrence graphs. The ability to verify and
correct the set of decision rules has direct impact on the extent of coordination needed in
an actual organization and the resulting communication load.

Task 2: Variable Structures: Heuristic rules in the Lattice Algorithm
Constraints

Develop a methodology for considering additional constraints in the Lattice Algorithm.
Such constraints include the degrees of redundancy and complexity at the different
processing nodes (to be derived from the DFS algorithm of Andreadakis), the projected
response time of the organization, ands some user-specified constraints on connections
between decision making units. Develop a procedure for checking the validity of such
constraints and incorporate them in the Lattice Algorithm. Generalize the approach to
multilevel organizational structures and to variable structures, where variable structures
are obtained by folding together different fixed structures. The real focus of the task is to
introduce these additional constraints as a way of containing the dimensionality problem
inherent in tlexibility and reducing the coordination requirements.

Design a symbolic interface for the Lattice algorithm. The interface would have the
capability of interpreting natural language inputs entered by the user and will include
some symbolic processing. The system will generate the interconnections matrices used
as input to the Lattice algorithm. The designer would then use the various tests described
in the proposal (such as DFS algorithm) to check the validity of the interconnection
constraints and to make required modifications.

-2-

Task 3: Information Dissemination

Semiannual progress reports are submitted in place of annual reports. The results of this
research will appear in thesis reports and in technical papers to be presented at
professional meetings and published in archival journals. In addition, oral presentations
will be given periodically ad arranged with ONR.

3. RESEARCH PLAN

The research plan describes the strategy for meeting the program objectives. Specifically the
research plan is organized around a series of specific well-defined research tasks that are
appropriate for theses at master's and Ph.D. levels. Individual students are assigned to each
task under the supervision of the principle investigator. Additional staff from the C31 Center
are included in the project whenever there is a specific need for their expertise.

The focus of the task I is the development of a methodology for analyzing and verifying the set
of decision rules used by an organization with distributed decision making. The methodology
is based on the modeling of the decision rules in the form of Colored Petri Net and on the
analysis of the net using S-invariant properties and Occurrence graphs. The results obtained for
the two analyses, when applied to a specific form of decision rules, have been presented in the
previous report. During the reporting period, the results were extended to decision rules
expressed in First-Order Predicate Calculus. The next task is to further extend these results for
a general form of rule bases that are expressed either in Predicate Calculus or First-Order
Predicate Calculus. This work is being done by A. Zaidi as part of his Ph.D. dissertation.

Task 2 has been initiated and focused on the consideration of additional constraints for small
non-variable organizations (case studied by Remy, where the number of decision makers is
less than 5). The consideration of degrees of redundancy and complexity at different
processing nodes, the projected response time of the organization, and the consideration of
user-defined constraints on connections between decision making units were investigated. The
inclusion of these constraints does not introduce any drastic changes in the way the problem of
generating feasible structure is approached by the Lattice Algorithm. The approach needs to be
generalized to multilevel structures and variable structures. This generalization will be the focus
of the effort during the next period.

A second issue identified in the previous report that affects directly the use of the Lattice
algorithm in task 2 is computation of S-invariants and extension of the algorithm to the
determination of deadlocks and traps in the organizational structure. The results obtained
during this effort have also been used in task 1. Ms Jin has completed her Master's thesis on
this subject; the technical report is in preparation.

4. STATUS REPORT

In the context of the project tasks and research plan outlined above, a number of specific
research tasks have been formulated. Each research task is discussed below. Detailed results
for some of the research tasks have already been presented in the previous semi-annual report.

-3-

4.1 CONSISTENCY AND COMPLETENESS IN DISTRIBUTED DECISION
MAKING

Detailed results of the S-invariant and Occurrence graph analyses applied to a Colored Petri Net
representation of a rule base has already been presented in the previous report. The two
analyses have been shown to uncover hiddep incomplete, inconsistent, circular, redundant, and
subsumed cases in a set of decision rules expressed originally as statements in either
Propositional Calculus (PC) or First-Order Predicate Calculus (FOPC). During this reporting
time period a number of techniques, presented in the previous report, were refined and checked
for any overlooked issues. The effort resulted in some slight modification (mostly additions) to
these algorithms. It has been stated in the previous report that the techniques presented so far
are applicable to rule bases expressed as statements in PC. This report extends the results
obtained for PC systems to include rules bases in FOPC.

For the rule bases in First-Order Predicate Calculus (FOPC), the Colored Petri Net (CPN)
representation of the rule base is first converted to the Associated Petri Net (APN)
representation. The APN is the underlying Petri Net structure of the CPN in hand. The S-
invariant and Occurrence graph analyses presented so far are now applied to the APN and
results from the two analyses are applied to the APN. The results so obtained only identify the
structures of the PNs that correspond to potential problematic cases; The reported cases provide
the necessary conditions for the problematic cases, however, one needs to apply further
analysis to prove the sufficiency. Once the potential problematic cases are reported by the first
phase of the analysis, a second phase is required to check the variable assignments of the terms
involved in the reported cases to identify the real problems. The following sections describe
Phase II of such an analysis in detail.

4.1.1 S-Invariant Analysis for FOPC Systems

The following steps summarize the techniques used in the S-Invariant analysis of the APN
corresponding to a CPN representing a rule base in FOPC;

"* For a rule base in FOPC, the corresponding CPN is converted to an APN.
"* Remove all the dangling places, in the APN, identified during detection of

incompleteness.
"* Construct the Marked Petri Net (MPN) from the APN.
"* Calculate minimal support S-invariants of the MPN.
"* Search calculated minimal supports for problematic cases (identified in previous

reports).
"* For systems in the restricted form of FOPC (4.1. below), report the problematic cases,

otherwise perform Phase II of the analysis (see below).

The following restricted form of FOPC does not require any further analysis;

Vx (C ---> 13) (4.1)

where (x and P3 are literals composed of unary predicates only; the terms involve only one
variable x.

The reported plausible problematic cases from the first phase of the analysis are grouped into
the following two sets:

IR: the set of plausible inconsistent rules-
CR: the set of plausible circular rules.

-4-

Phase 11

As mentioned earlier, the definition of problematic cases is more involved in FOPC than the
one for rules in PC. The application of the algorithm on systems which are originally expressed
in FOPC only identifies the Petri Net structures of rules that might have problems. This section
presents algorithms which take these reported cases and check the variable assignments and
bindings for possible erroneous instantiations of these rules. If such an assignment or binding
is found, the rule is declared as problematic. The algorithm also identifies the erroneous
instantiations of these rules; this information might help an expert to remove the errors by
putting constraint (exceptions) on variable bindings. The algorithm presented in this section
uses the following technique.

0 Construction of Generalized Deduction Tree

The approach is similar to the Explanation-Based Learning (Mitchell et. al., 1986, 1990;
Dejong and Mooney, 1986, 1990; Tecuci, 1992).

Algorithm for Inconsistent Rules (Case I & I11)
(The set of possible inconsistent rules IR is given.)

"* Construct a generalized deduction tree with the help of rules in IR; the deduction tree
can be directly constructed from the CPN representation of rules in IR.

"* In the generalized deduction tree. check the terms associated with predicates p and q,
where the two predicates are mutually exclusive (semantically or syntactically). If the
terms associated with these predicates are identical, the set of rules IR is in fact
inconsistent.

"* In case the set is not identified as inconsistent, calculate the variable assignment (if one
exists) that will generate an inconsistent instantiation of IR.

The following example illustrates the algorithm: Consider the set of rules (IRI) that is reported
as (possibly) inconsistent during the first phase of the algorithm;

RI: Vx Vy [A(x, y) A B(y) -> C(x, y)]
R2: Vu Vv [C(u, v) A D(v, u) --* E(v, u)]

R3: Vx Vy [E(x, y) A F(y) -4 -"A(y, x)]

The CPN representation of these rules is given in Figure I.

A

N,*Y R)31U, v) 2)

(V)y V,)
D) R_3 -A

FLO
(Y)

Figure I CPN Representation of Rules

-5-

The two steps of constructing the generalized deduction tree from the CPN in Figure 1 are
illustrated in Figure 2. The first deduction tree is constructed directly from the CPN; the terms
of the predicates are compared at each node in the tree in order to find the most general
unification pattern of terms. In the deduction tree (Figure 2), the comparison of the terms yields
the following unification patterns:

E(v, u) E(x, y) [v(in R2) = x(in R3), u(in R2) = y(in R3)]

C(x, y) C(u, v) Ix(in RI) = u(in R2), y(in RI) = v(in R2)]

The most general unification pattern of variables will, therefore, be given as;

[x(in RI) = u(in R2) = y(in R3), y(in RI) = v(in R2) = x(in R3)]

The terms in R2 and R3 are modified to reflect this unification; the resulting tree is the most
general deduction tree and is also shown in Figure 2. Since the terms of Predicates A and --A
are identical, the set IRI is in fact inconsistent.

Consider now a second example with the following set of rules (IR3) that is reported as
(possibly) inconsistent during the first phase of the algorithm;

RI: Vx Vy [A(x, y) ^1 B(y) --> D(x)]

R2: Vx Vy [C(y) A -iA(y, x) -> E(x)]

R3: Vx Vy [D(x, y) A E(y) -4 F(x, y)l

The CPN representation of these rules is given in Figure 3. The generalized deduction tree is
shown in Figure 4.

-'AA~y, x)

V=X

-~,x

u = y E(x, y) F(y)

XU E(v, U) = E(x, y) F(Y)/

Y=V C(YI X) D(x, y)
C/x, Y) C(u, v) D(v, U)

A(x, y) B(y) A(y, x) B(x)

Figure 2 Construction of Generalized Deduction Tree

-6-

A

B °

Figure 3 CPN Representation of Rules

F(x. y)

FF(x, y)

x=x l \ x)E

/ D(x\ D(x) / E(x E(Y)

A(x, y) B(y) -.A(y, x) C(y) A(x, yl) B(yl) -"A(y2, y) C(y)

Figure 4 Construction of Generalized Deduction Tree

The set of rules is not inconsistent since the terms associated with A and -'A are not identical;
they represent the relation or property between two different set of objects (constants).
However, the following instantiations of variables in RI and R2 will introduce an
inconsistency;

x (in RI) = y (in R2)
y (in RI) = x (in R2)

and/or

x (in RI) = x (in R2)
y (in RI) = y (in R2), in case the relation A is symmetrical,

i.e., A(x, y) = A(y, x)

Algorithm for Circular Rules
(The set of circular rules CR is given together with the minimal support <Xi> of MPN that
helped identify these rules.)

"* If Vp, p E <Xi>. I'pl = I in the original CPN, then <Xi> represents a deadlock and no
further analysis is required. Report the case as erroneous.

"• Construct a generalized deduction tree with the help of rules in CR: In order to be
consistent with the definition of a tree, the loop in CR is opened by duplicating one of

-7-

the places (selected randomly), p, in <Xi>. The deduction tree can now be directly
constructed from the CPN representation of rules in CR with one node, representing p,
appearing twice.
In the generalized deduction tree, check the terms associated with the duplicated node,
p. If the terms associated with these predicates are identical, the set of rules CR is
declared circular.

The approach is illustrated in the following example. Note that the algorithm described above
checks a single iteration of the circular rules to determine the error. There might be cases that
are circular in the second, third or nth iteration, but since these cases do generate new
assertions, they are not considered erroneous by the algorithm.

Consider the following example: a set of rules (CR) is reported as (possibly) circular during the
first phase of the algorithm.

RI: Vx Vy [A(x, y) A B(y) - C(x, y)]

R2: Vu Vv [C(u, v) A D(v, u) -- E(v, u)]
R3: Vx Vy [E(x, y) A F(y) -+ A(y, x)]

The CPN representation of these rules is given in Figure 5. The shaded place and arc in the CPN
represent the process of opening the loop so that a generalized deduction tree can be constructed. The
generalized deduction tree is shown in Figure 6.

D

(Y)(y

Figure 5 CPN Representation of Rules

A(y, x)

E(x, y) Fly)

,x) D(x, y)

A(y, x) 8(x)

Figure 6 Generalized Deduction Tree

-8-

The terms associated with predicate A in the deduction tree indicate that the set CR in fact

consists of circular rules.

4.1.2 Occurrence Graph Analysis for FOPC Systems

As was the case with S-invariant analysis, the Occurrence graph analysis presented for PC
systems is applied to the APN representation of the CPN representing a rule base in FOPC.
During this initial phase, the reported cases only identify the Petri Net structures of rules that
might have problems. This section presents algorithms which take these reported cases and
check the variable assignments and bindings for possible erroneous instantiations of these
rules. If such an assignment or binding is found, the rule is declared as problematic. The
algorithm also identifies the erroneous instantiations of these rules; this information might help
an expert to remove the errors by putting constraint (exceptions) on variable bindings. The
algorithm presented in this section uses the following two techniques;

* Construction of Generalized Deduction Tree
* Unification of Rules

The first approach has already been presented and illustrated in the previous section. The first
phase of the Occurrence graph analysis results in two (or more) sets of rules for every
identified redundant, subsumed, and conflicting case. The approach constructs generalized
deduction trees for every such set to generate the most general expressions representing rules in
these sets. The two generalized expression are compared in the second approach to establish
the existence of a problem. The approach unifies the variables in the two generalized
expressions and compares them for variable assignments that might lead to a problematic
instantiation.

Algorithm for Redundant Rules
(Two sets of rules RRI and RR2 are found with structures representing redundancy -
rules in RR! are redundant in the presence of rules in RR2 and vice versa.)

"* Construct a generalized deduction tree for rules in RR 1. Construct another generalized
tree for the rules in RR2.

"* From the two generalized deduction trees, extract the most general form of the rules in
the two sets by collecting the leaves of the tree as premises and root as the consequent.

"• Unify the variables in the terms in the two general expressions obtained. If unification
results in two identical rules, declare the rules as redundant.

"* In case the sets are not identified as redundant, calculate the variable assignment (if
there exists one) that will generate a redundant instantiation of the two sets of rules.

The following example illustrates the algorithm: Consider the following two sets of rules, RRI
and RR2, that are reported as possibly redundant during the first phase of the algorithm-

RR I consists of following rules:
RI: Vx Vy [A(x, y) A B(x, y) -- D(x. y)]
R2: Vx Vy [C(y, z) A D(x, y) ---) F(x, z)]
RR2 consists of following rules:
R3: Vx Vy Vz [B(x, y) A C(y, z) - E(x, z)]
R4: Vx Vy Vz [A(x, y) A E(x, z) - F(x, z)]

The CPN representing these rules is shown in Figure 7.

-9-

A R1 D

(X, z)(X Y

Figure '7 CPN Representation of Rules

The two steps of constructing the generalized deduction trees from the CPN in Figure 7 are
illustrated in Figures 8 and 9. Figure 8 presents the generalized deduction tree constructed for
the rules in set RR 1, while Figure 9 shows the deduction tree for the rules in RR2.

The most general expression representing the rules in RRi is obtained by collecting the leaves
of the generalized deduction tree (Figure 8) as the premise and the root as the consequent. The
rule obtained as a result is giver as:

A(x, y) A B(x, y) A C(y, z) -4 F(x, z)

Similarly, the most general rule representing the set RR2 is given as:
A(x, y) A B(x, yl) A C(yl, z) -* F(x, z)

The terms of the consequent in the two consequents above are identical, however, a
comparison of terms in the premises of the two rules reveals the fact that the expression
representing RR2 is more general than the one for RR2, since the instances covered by the
rules in RRI represent a subset (for y = yl) of all the instances covered by the rules in RR2.
Therefore, for the set of instances covered by rules in both the sets, the two sets represent a
redundant case.

F(x, z) F(x, z)

O(x, Y) A D(x, y) A CQy, z) D-x, y) Cy, z)

AAy (x, y) AA x)A y1)- (x, z)Bxy

Figure 8 Generalized Deduction Tree For Rules In RR1

-10-

F(x, z) F(x, z)

Z=Z / /
E(x, z) = E(x, z) A(x, y) E(x, z) A(x, y)

C(yl, z) Blx, yl) C(yl, z) B(x, yl)

Figure 9 Generalized Deduction Tree For Rules In RR2

Algorithm for Subsumed Rules
(Two sets of rules SRI and SR2 are found with structures representing subsumed cases
rules in SRI are subsumed by the rules in SR2.)

"* Construct a generalized deduction tree for rules in SRI. Construct another generalized
tree for the rules in SR2.

"* From the two generalized deduction trees, extract the most general form of the rules in
the two sets by collecting the leaves of the tree as premises and the root as the
consequent.

"* Unify the variables in the terms in the two general expressions obtained. If unification
results in a situation that the terms in expression representing SR2 are identical to the
terms in SRI corresponding to predicates common in both expressions. declare the
rules as subsumed.

"• In case the sets are not identified as subsumed, calculate the variable assignment (if
there exists one) that will generate a subsumed instantiation of the two sets of rules.

The following example illustrates the algorithm: Consider two sets of rules, SRI and SR2,
where SRI is reported to be possibly subsumed by the rules in SR2 during the first phase of
the algorithm;

SR I consists of following rules:
RI: Vx Vy [A(x, y) A B(x, y) -- D(x, y)]
R2: Vx Vy [C(y. x) A D(x, y) -- F(x, y)]

SR2 consists of following rule:
R3: Vu Vv [A(u, v) A B(u, v) -4 F(u, v)]

The CPN representing these rules is shown in Figure 10.

A R1 D

Figure 10 CPN Representation of Rules

-) R-

Since there is only one rule in SR2, there is no necd to construct the generalized deduction tree
for SR2. The only rule in SR2, R3, is the most general expression representing the set. The
generalized deduction iree for the rules in SRI is shown in Figure II. The generalized
expression corresponding the set is given as:

A(x, y) A B(x, y) A C(y. x) --- F(.x, y)
The unification of terms applied to the two expressions yields I x/u, y/v }.

F(x, y) F(x, y)

D(x, y) = D(x, y) C(y, x) D(x, y) C(y, x)

A(x, y) B(x, y) A(x, y) B(x, y)

Figure 1 Generalized Deduction Tree For Rules In SRI

The terms in the rule representing SR2 when modified to reflect this unification make the rule
look like

A(x, y) A B(x, y) --- F(x, y)

which in fact subsumes the rules in SRI.

Algorithm for Conflicting Rules (Case II)
(Two sets of rules CR1 and CR2 are found with structures representing inconsistency -

rules in CRI are in conflict with the rules in CR2.)

"* Construct a generalized deduction tree for rules in CR 1. Construct another generalized
tree for the rules in CR2.

"* From the two generalized deduction trees, extract the most general form of the rules in
the two sets by collecting the leaves of the tree as premises and the root as the
consequent.

"* Unify the variables in the terms in the two general expressions obtained. If unification
results in two rules with identical premises and identical terms for the conflicting
predicates in the consequents, declare the rules as conflicting (case II).

"* In case the sets are not identified as conflicting, calculate the variable assignment (if
there exists one) that will generate a conflicting instantiation of the two sets of rules,

As an example consider the following two sets of rules, CRI and CR2. that are reported in
conflict during the first phase of the algorithm;

CR I consists of following rules:

RI: Vx Vy [pI(x, y) A p2(x) Ap3(y, x) A p4(y) -- A(x, y)]
CR2 consists of following rules:

R2: Vu Vv [pI(u, v) A p2(u) --- p5(u, v)]
R3: Vx Vy tp3(x, y) A p4(x) -- p6(x, y)]

R4: Vx Vy [p5(x. y) A p6(y, x) -- 1 B(y, x)]

-12-

where A and B are defined as mutually exclusive concepts; pi = {A ,B).

The CPN representing these rules is shown in Figure 12.

pl R1 A

p)(x, y) 3y - ,x

p1(x, v) ^p2(u)^3(y 4y)-B(y,)p

B(y, x)

pl~, v p2u) • p(x, Y) R44x)

ay (y, X

p1l(x, y) p2(x) p3(y, x) p4(y)

Figure 13 Generalized Deduction Tree For Rules In CR2

- 13-

A comparison of the rule in CR1 with the general expression representing CR2 reveals that
although the two premises are identical, but the consequents of the two rules are not in conflict
provided the predicates A and B are not symmetric. In case the two concepts are symmetric,
i.e., A(x, y) = B(y, x), the sets CR1 and CR2 are in conflict.

4.2 VARIABLE STRUCTURES: HEURISTIC RULES IN THE LATTICE
ALGORITHM CONSTRAINTS

4.2.1 Including User Heuristics rules in the Lattice Algorithm

The lattice algorithm allows the automatic generation of candidate architectures satisfying a set
of connection constraints and of structural constraints. The candidate architectures (which are
numerous) are not listed singly but gathered in lattices defined by their largest and their smallest
element: the maximally and minimally connected architectures (MAXOs and MINOs). Each
candidate architecture belongs to one or more of the lattices and can be defined by addition of
simple paths to the MINO or the subtraction of simple paths from the MAXO. The initial
implementation of the work of Remy (1986) was limited to 5 Decision Making Units or DMUs
(the size that could be handled by a I MB Macintosh Plus). More recent work by Zaidi (1992)
has gone beyond this limitation by introducing a layered representation of the architecture, thus
allowing for an arbitrary number of DMUs.

The input of the lattice algorithm is a set of connection constraints represented by matrices: e
(input to the organization), s (output of the organization), F (SA to IF stages), G (RS to SA
stages), H (RS to IF stages), and C (RS to CI stages). The architecture designer enters in each
cell of the different matrices either "I" if he wants the corresponding connection to exist, "0" if
he does not, or "2" if the corresponding link is optional. If n is the number of Decision Making
Units (DMU) considered by the user, the initial number of elements in the set of possible
structures is 24n2 -2n. For 5 DMUs, there are 290 possible structures. Each time, the user
specifies "I" or "0" in one cell of the matrices, the number of elements of the set of possible
structures is divided by 2. After executing the Lattice Algorithm, the set of feasible structures
has much fewer elements than the original set. The workload of the architecture's designer has
been reduced because instead of looking at the entire set, he can concentrate only on the
boundaries defined by the MINOs and MAXOs. When he has identified a pair of MINO and
MAXO that contains interactions that seem appropriate for the specific application, he can
further investigate the lattice connecting those two structures. The problem is that the number
of feasible structures is still extensive and not easily manageable.

The set of feasible structures can be further reduced by taking into account in the Lattice
Algorithm, heuristics, rules and requirements that are currently used later in the design process.
Currently, the architecture designer has to specify a set of interactions, run the Lattice
Algorithm to get the boundaries of the set of feasible structures defined by the MINOs and
MAXOs, and use some kind of heuristics and rules to discard further feasible architectures to
obtain a manageable set of architectures. On this final set, the designer can carry out some
performance analysis to assess whether the obtained architectures satisfy a set of predetermined
requirements. The focus of this task is to translate some of these rules. heuristics and
requirements into additional constraints that become part of the input data in the Lattice
Algorithm. Then these constraints will be satisfied in the automated architecture generation
process.

-14-

After a brief description of the Lattice Algorithm, three types of additional constraints that could
be included in the Lattice Algorithm are presented. The first one deals with the consideration of
requirements on the degrees of redundancy and complexity desired in the architecture. The
second one takes into account response time requirements. The last one addresses some user-
defined rules that limit the types of interaction.

Brief Overview of the Lattice Algorithm

From the interaction constraints entered by the user in the different matrices, the algorithm
generates two Petri nets: the Kernel Net corresponding to the structure deduced from the
connection matrices where all the optional links are considered inactive and the Universal Net
corresponding to the structures where all optional links are considered active.

In a second stage, the algorithm computes the S-invariants of the Universal Net and stores
those that contain the source place and the sink place (the simple paths).

In a third stage, MINOs are generated by adding simple paths stored it' the second stage to the
Kernel Net until all the structural constraints are satisfied. Remy has defined four basic
structural constraints:

RI The structure should be connected

R2 The structure is acyclical (no loop)

R3 There exists at most one link from the RS stage of DMi to the SA, IF, CI stage of DMj:
Gij + Hij + Cij < I

R4 Information Fusion takes place only at the IF and CI stages. The SA stage has at most
one input with preference to external input: ej + Gij I

In a fourth stage, MAXOs are generated by keeping removing simple paths from the Universal
Net until none of the constraints are violated.

Finally, the algorithm computes the invariants of the different MINOs and MAXOs to check the
absence of loops. If there is a loop, the MINO or the MAXO is discarded.

Redundancy and Complexity

Redundancy and Complexity are two aspects of importance in the design of architecture.
Redundancy is related to the dissemination of information in the organization for back-up
purposes. While redundancy is desirable for survivability and reliability, it is limited by the
communications network capacity. Complexity addresses the problem of fusion of information
from different sources. The more sources, the more complex the fusion process and the more
resource-consuming the process is. The architecture designer has to deal with these two
parameters and perform some tradeoffs. The more redundancy is introduced, the more complex
fusion algorithms will be or the more resources will be needed.

Remy (1986) gives an interpretation of MINOs and MAXOs. MINOs represent organization
with a minimal number of interactions between DMUs. They represent not very survivable
architectures because there is no redundancy to disseminate received or generated information
throughout the system. However, they represent timely organizations. On the other hand,
MAXOs represent architectures with a lot of redundancy. but that are less timely. An
interesting feature for the Lattice Algorithm would be to take into account redundancy and
complexity requirements in the generation process of feasible structures. Stamos Andreadakis

- 15-

(1988) described an alternative methodology to generate architectures. After defining basic
Information Flow Paths, he introduced the concepts of degree of Complexity at Fusion nodes
and degree of Redundancy at Processing nodes. Redundancy is related to the number of
Information Flow Paths that receive data generated from a Processing node while Complexity
is related to the number of Information Flow Paths that send data to a Fusion Node. The
definition of these degrees of redundancy and complexity is the basis for the generation of a set
Data Flow Structures from which architectures can be derived by allocating functions to
decision makers.

The concept of complexity and redundancy can be applied to the five stage model of the
Decision Making Unit (Levis, 1993). The Situation Assessment and Response Selection stages
can be considered as Processing nodes while Information Fusion and Command Interpretation
stages are Fusion nodes. The task Processing stage has no external interactions so that it does
not appear in the Lattice Algorithm; consequently, it will be ignored in what follows without
any loss of generality. We can define SARi (resp. RSRi) as the degree of redundancy of the
SA (resp. RS) stage of DMUi. SARi (resp. RSRi) is equal to the number of output places of
the transition representing the SA (resp. RS) stage of DMU,. We can also define IFCi (resp.
CICj) as the degree of complexity of the IF (resp. CI) stage of DMU,. IFC- (resp. dICj) is
equ'l to the number of input places of the transition representing theIF (resp. CI) stage of
DMUi. If n is the number of DMUs, using the connection matrices of the Lattice Algorithm,
these degrees can expressed as:In

I+f •I if stage IFi exists

SARi = ,=1

F if stage IFi does not exist

n

RSRi = Si + "Gii + Hij + Cij
j=l

I + Fi + H1i if stage SAj exists

IFC=

+ H1 if stage SAj does not exist/n
I + :Cii if stage IFj exists

CIC O i=

,_Cii if stage IFj does not exist

The Lattice Algorithm uses a specific labeling for each place and for each transition as shown
on Figure 14. The computation of the S-invariants results in the generation of I x m vectors.
Each entry corresponds to a place of the Universal Net and takes the value 1, if the place is
included in the S-invariant, 0 if it is not. This vector representation is also used for structures

obtained by adding (joining) simple paths. The join operation is noted by u. and we have:

[XI ... Xi ... Xn] U [YI ... Yi ... Ynl = [(XI or Y,), ... (Xi or Yi) ...(Xn or Yn)]

where Xi. YiE 10,1) and Xi orYi=0ifXi=0andYi=0
Xi or Yi = I otherwise.

- 16-

Thus, a structure is also represented by a vector, each entry corresponding to a place of the
Universal Net and taking value I if the place is included in the structure, 0 if it is not.
Therefore, it is possible to define the degrees of redundancy and complexity of a structure in
term of the values taken by the entries of its vector representation. If we denote by Pxyzt(s) the
function that gives the value of the entry corresponding to place Pyzt in the vector
representation of the structure s, we have:

n

SARi(s) = P2i(s) + IP2gi(s)
j=1

j•i
n

RSRi(s) = P5i(s) + X Psii(s) + P5kj2(s) + P.ij3(s)
j=1

IFCM(s) = P2j(S) + •P2iI(s) + P.Mj2(s)

i~j

CICA(s) = P3j(s) + I Psip(s)
ijj

p1 tiIl p2i t2i p3i t3i p4i t4i p5i

pO to t5 p6

plj tlj p2j t2j p3j t3j p4j t4j p5j

Figure 14 Labeling of Places and Transitions in the Lattice Algorithm

The architecture designer can specify ranges for the different degrees of redundancy and
complexity for the architecture he envisions. These ranges will introduce additional constraints
that the Lattice algorithm will check in the same way as it checks constraints R3 and R4.

The different degrees can not be fixed arbitrarily because they are functions of each others: The
definition minimal degree of redundancy requires the definition of minimal degree of
complexity to make sure that each interaction place created to meet the redundancy requirements
will not violate the complexity requirements. The first constraint is that if n is the number of
decision making units, the different degrees have to satisfy:

05•SARi_<n 0<RSRi_<n 0<IFC•<n 0<CICj<n

On the other hand, we have:

- 17-

n1 n n n n n n n

ISAR + IRSRi = 1P2i+YXXP2,J+ X Pii + Y2Psii + P.Mj2 + PPsij3

n n n nl n n n n

IIFcj+ CIC = P2 + X(p2i + PNi2) + Xrp.j + Piij3
j=l j=l j=l j=1 i=1 j=l j=1 i=lii-j ij

and therefore:

XSARi + XRSRi = y:IFCi + CIC - P3i+ : P.,i + I P ijp
i=1 i=l i=l i=l i=l i=1 i=1 j=1j*i

This relation between the different degrees is much more complex than the one derived by
Andreadakis. It can not be used before running the Lattice Algorithm because, once the ranges
of the degrees have been specified, it is impossible to know before hand, if places P 3i, P5 i and
P5i! exist or not.

It is easy to show that these new constraints are convex. The addition of a simple path to a
structure will only increase some of those different degrees by 1. If s is a structure and p is a
simple path, we will have:

Vie {1 ..., n}, SARi(s) < SARi(s u p) < SARi(s) + 1
Vi e {l ...1 n }, RSRi(s) < RSRi(s u p) !5 RSRi(s) + I

Vj {1 n), IFCj(s) < IFCj(s u p) IFCj(s) + I

Vj • {1 n 1, CICj(s) _< CIC,(s u p) _ CICj(s) + 1

Therefore, if we denote by c the operation that satisfies:

[Xl ... Xi ... XmI C [Yi ... Yi ... YmI if Vi E {1, ... ,m), Xi !5 Yi

it is easy to deduce that if sl c s2 then:

Vi E {1 n 1, SARi(s l) 5 SARi(s 2)

Vi• {1. n}, RSRi(sl) 5 RSRi(s2)
Vj •- {1... n), IFCj(s 1) !5 IFCj(s2)
'qj E {11,.. n}, CICj(s 1) !5 cCICs2)

and we have for all s such that s I c s c s2:

Vi E {1. n }, SARi(si) 5 SARi(s) < SARi(s2)

Vi E {1 ..., n), RSRi(sl) < RSRi(s) 5 RSRi(s2)

Vj c {1 ..., n), IFCj(sl) :5 IFC,(s) _< IFC,(s2)
Vj E 11, n.. n}, ClCj(s 1) <5 CICj(s) <5 CICj(s2)

From the convexity properties we have just addressed, we can deduce that there exist feasible
architectures that satisfy all the constraints if and only if there exists a MINO for which the
different degrees of complexity and redundancy are smaller than the upper boundaries defined
by the architecture designer and there exists a MAXO for which these degrees are larger than
the lower boundaries.

-18-

The output of the updated Lattice Algorithm will be a new set of MINOs and MAXOs that will
define boundaries of lattices included in the ones generated by the Lattice Algorithm without
these new constraints (if these constraints are binding).

Let us illustrate these concepts in an example from Remy (1986): the Warfare Commander
Problem. This organization has 5 DMUs. DMUI and DMU 2 act as the sensors of the
organization (Sonar Operator (SO) and Radar Operator (RO) for example). They both receive
information from the external environment (threat detection). They may or may not share this
information. However, DMUI has to send this information to DMU 3 which acts as the
Executive Coordinator (EXCO). Finally, DMU 4, the Anti-Air Warfare Commander (AAWC)
and DMU 5 , the Anti-Submarine Warfare Commander (ASWC) produce the organization's
response (firing of missiles for AAWC or torpedoes and depth charges for ASWC). They
receive orders from the coordinator DMU 3 and may receive information from DMU1 and
DMU 2. They may also share their results. The connection matrices corresponding to this
description of the organization is displayed in Figure 15.

e s
ext -> SA RS -> ext

1 0 0 0 0 0 0 1 1

F G
SA -> IF RS -> SA

X 2 0 0 0 X 0 0 0 0
2 X 0 0 0 X 0 0 0
0 0 X 0 0 0 0 X 0 0
0 0 0 X 0 0 0 0 X 0
0 0 0 0 X 0 O 0 0 X

H C
RS -> IF RS -> CI

X 0 1 2 2 X 0 0 0 0
0 X 2 22 0 X 0 0 0
0 0 X 0 0 0 0 X 1 2
0 0 2 X 2 0 0 0 X 0
0 0 2 2 X 0 0 0 0 X

Figure 15 Connection matrices for the Example

The Lattice Algorithm computes 40 invariants and produces 10 MINOs and 3 MAXOs that are
listed in Table 1. Table I lists also the different degrees of redundancy and complexity
computed with the formula defined above.

-19-

Table I List of MINOs and MAXOs with their degrees of redundancy and complexity

MINOS MAXOS
PLACES I 2 3 4 5 6 7 8 9 I0 1 2 3

I 0 I I I I I I I I I I I I I
2 II I I I I 1 I 1 I I I I I !
3 12 I I I I I I I I I I I I I
4 2 1 I I I I 1 I I 1 I I I I I
5 212 0 0 0 0 0 0 0 0 0 0 1 I I
6 221 0 0 0 I I I 0 0 0 0 I I I
7 22 I I I 0 0 0 I I I I I I I
8 3 1 I I I I I I I I I I I I 1
9 32 I I I 0 0 0 I I I I I I I
10 33 I 1 I I 1 I I 1 I I I I I
I1 34 1 1 1 0 0 0 0 0 0 0 1 1 1
12 35 I 0 I I 0 I I 0 I 1 I I I
13 4 1 I I I I I I I I I 1 1 I I
14 42 I I I 0 0 0 I 1 I I I I !
15 43 1 I I I I I I I I I I I I
16 44 1 I I I I I 1 1 I 1 I 1 I
17 45 I 1 I 1 I I I I I I I I I
18 5132 I I I I I I I I I I I 1 I
19 5142 0 0 0 0 0 0 0 0 0 0 I I I
20 5152 I 0 0 I 0 0 1 0 0 0 1 I I
21 5232 0 0 0 0 0 0 1 1 I 0 1 I I
22 5242 I I I 0 0 0 0 0 0 0 I 1 I
23 5252 0 0 0 0 0 0 0 0 0 1 I I I
24 5343 1 I I I I I I I I I I I I
25 5353 0 1 0 0 I 0 0 I 0 0 0 1 1
26 54 I 1 I I 1 I I 1 I 1 I 1 I
27 5432 0 0 0 0 0 0 0 0 0 0 0 0 0
28 5452 0 0 1 0 0 I 0 0 I 0 0 0 1
29 55 1 1 1 I I I I 1 I 1 1 1 1
30 5532 0 0 0 0 0 0 0 0 0 0 I 0 0
31 5542 0 0 0 0 0 0 0 0 0 0 I I 0
32 6 I 1 I I i I 1 ! I I I

SARI I I I I I I I I I I 2 2 2
SAR2 I I I I I I I I I I 2 2 2
SAR3 0 0 0 0 0 0 0 0 0 0 0 0 0
SAR4 0 0 0 0 0 0 0 0 0 0 0 0 0
SAR5 0 0 0 0 0 0 0 0 0 0 0 0 0
RSR I 2 I 1 2 I 1 2 1 I I 3 3 3
RSR2 I I I 0 0 0 I 1 I 1 3 3 3
RSR3 I 2 I I 2 I I 2 I I 1 2 2
RSR4 1 1 2 1 1 2 I 1 2 1 I I 2
RSR5 I I I I I I I I 1 3 2 I
IFCI I I I 2 2 2 I I I I 2 2 2
IFC2 I I I 0 0 0 I I I 1 2 2 2
IFC3 I I I I I I 2 2 2 1 3 2 2
IFC4 I I I 0 0 0 0 0 0 0 3 3 2
IFC5 I 0 I I 0 I I 0 I I 2 2 3
CIC I I I I I I I I I I I I I I
CIC2 I I I 0 0 0 I I I I I I I
CIC3 I I I I I I I I I I I I I
CIC4 2 2 2 I I I I I 1 I 2 2 2
CIC5 I I I I I I I I I I I 2 2

- 20-

Let us assume that in order to meet communications, processing and survivability
requirements, the architecture designer specifies that:

SARI=2 SAR2 =2

RSRI< 2 RSR 2 < 2 RSR 3 = 2 RSR 4 = I RSR 5 = I

IFCI = 2 IFC2 = 2 IFC3 =2 IFC4 5 I IFC 5 5 1

CICI = I CIC 2 = I CIC3 = I CIC 4 = 2 CIC5 = 2

Frown Table 1, we can conclude that none of the MINOs satisfies the architecture designer
requirements because SARI and SAR2 for those MINOs are all less than or equal to I and none
of the MAXOs satisfies those requirements because IFC4 and IFC5 for the MAXOs are larger
than or equal to 2. However, a set of feasible structures exists because there exists a MINO
(for example MINO 8) for which the degrees of redundancy and complexity are smaller than
the maximal requirements. and there exists a MAXO (for example M2) for which the degrees
of redundancy and complexity are larger than the minimal requirements. To get the new set of
MINOs and MAXOs that satisfy these requirements, more simple paths need to be added to the
current MINOs and other simple paths need to be subtracted from the MAXOs. Let us consider
the MINO m8 and MAXO M2 displayed in Figure 16 and 17. We have m8 c M2.

Figure 16 MINO m8

MINO m8 does not satisfy the constraints SAR 1 = 2 SAR2 = 2 IFC1 = 2 and IFC2 - 2.
Adding a simple path containing the interaction place between SAl and 1F2 (p122) and places
that are already in the structure will increase SAR1 and IFC2 by I and leave the other degrees
unchanged. In the same way, adding a simple path containing the interaction place betweenSA2 and IFm (p221) and places that are already in the structure will increase SAR2 and IFC2 by

I and leave the other degrees unchanged. Adding these two appropriate simple paths will result
in a MINO for the complete set of constraints. This new MINO is displayed in Figure 18.

-21 -

Figure 17 MAXO M2

MAXO M2 violates the constraints RSRI -< 2, RSR 2 • 2. RSR 5 = I, IFC4 1 !, and IFC5 5 1
Here again, by removing appropriate simple paths that contain undesirable interaction places, a
MAXOs satisfying the complete set of constraints can be reached. Figure 19 displays one of
the new MAXO that can be reached by removing simple paths.

Figure 18 New MINO Reached by Adding Simple Paths to m8

- 22-

Figure 19 New MAXO Reached by Removing Simple Paths from M2

The process we have just described is the process used by the Lattice Algorithm to generate
feasible architecture: it keeps adding simple paths to the Kernel net until all the constraints are
satisfied to generate the set of MINOs and it keeps subtracting Simple Path from the Universal
Net until none of the constraints are violated. These new constraints on complexity and
redundancy will be easy to include in the software application of the algorithm since it will not
change the global process of MINO and MAXO generation.

Response Time
Response time is a critical measure of performance that is always considered by the architecture
designer in selecting the final set of candidate structures. Timed Petri Nets are a tool that allows
to assess if the response time of an architecture will be less than a given time requirement. This
new constraint can be handled easily by the Lattice Algorithm.

Once the source and sink places are merged together, the Petri Nets handled by the Lattice
Algorithm are marked graphs. Hillion (1986) showed that the response time of the system is
equal to the largest sum of the delays of the transitions of the S-component of the S-invariants
of the Petri Net. Therefore, the first step is to associate a delay with each transition that
corresponds to the amount of time required to perform the process the transition represents.

The second step is to compute the delay associated with each Simple Path computed by the
Lattice Algorithm and discard those whose delay is larger than the required response time. The
lattice algorithm will then be executed with this subset of Simple Paths and a smaller set of
solutions will be generated. All the solutions of this set will satisfy the requirements.

Let us describe the procedure on the Warfare Commander example described in the previous
section. As said earlier, the Lattice Algorithm generates 40 simple paths / invariants for the
connection constraints specified in Figure 15. The minimal support of these 40 invariants are
listed in Table 2.

- 23 -

<,A
04RS

Table 2 Minimal Support of the Warfare Commander Problem
SP Minimal Support

I PO-tOyP I HI II P21-121 -P11-131 -P41-t41l-Ps 142-t24-P34-t34-P44-t44-P54-t15-P6
2 PO-tO-P I2-t1I 2-P22 I -121 -P.4I-t3 I -P41 -141 -P5 142-124-P34-(34-P44-(44-Ps4-ts-P6
3 PO-tO-P II-t I I -P21 2-t 22-P32-t32-P42-t42-P.524 2-t24-P34-t3 4-P44-t44-P54-t5-P 6
4 PO-1O-P I2-t12-P22-t 22-P-32-(32-P 42-t42-P5 242-t24-P34-t ' 4-P44-t44-P54-t.5 -P6
5 POO-t0 I-p 1 -P21-t2 i -P3i -t13-P41-t14-Psi 3-t 23-Pll-t A3-P4-43-P4 -p5 434 -t 34-p44-t44-Ps4-ts-P 6
6 POtO-P I 2-t 2-P22 I l -P31 -t31 -P41 t4I -P51I32-t2ý3-P33-t33-P43-143-P534.3-t34-P44-(44-Pý54-ts-P 6
7 p0-tO-P 11-111 -P21 2-t22-P32-t32-P42-t 42-P523 2-t23-P33-t.33-P 43-t43-P5343-t '34-P44-t 44-P54-tS-P 6
8 PO-tO-P I 2-tl 2-P2 2-t22-P.32-t32-P 42-t42-P-s232-t23-P.33-t3l3-P43-t 43-P.5343-t34-P44-t 44 -Psi4-tsi-P 6
9 P-tO-P1 I -t I I -P21-121 -P31- 131 -P41- 141-Psi 52-t25-P315-t35S-P45i-t45i-P5.5-t5-P6
1 0 P0-tO-P I 2-t 2-P22 I -121I -P3 I-t31I -P41 -t4l -P5152-t 2 5i-P35-t3i-P4.5-t45-P55-tS5-P 6

I~~~~ IPtOPI ~I-tII -P21 2-t22-P32-t32-P42-t42-P52.52-t25-P3.5-135-P45-t45-P55~-t5-P6
12 PO-tO-P I2-t I2-P22-t 22-P32-t32-P 42-t42-P525i2-t 2¶-P3-5-tls-P4st 4 5-P50 5-19 P6
1 3 PO-tO-Pi I I -I -P2 I-t2 I -P31I-t31I -P41 -(41 -Psi 32-t23-P33(3.3-P43-t4.3P5-353-t3.5-41-45l'5~i5-t15-P 6
14 PO-tO-P I12-t1I 2-P22 I1-121 -P31I-t31I -P41 -t41I-P5 I 32-t 23-P33-t133-P4 3-t 43-P535c3-t-35-P45-t 45-P5 5-t 5-P6
15 POtOPI IY i- t II i-P212-t22-P32-t3 2-P42-t42-P5232-t 23-P33-(33-P4 3-t43-P53 -S3-t 3 .5-P45 - 45-P55-15-tiP6
16 PO-tO-P I2-t I2-P22-t 22-P-32-t.32-P 4 2-t 42-Psz232-t2.3-P.33-t 33-P43-t 43-P5353-t35-P 45 -t4j-Pss-tsi-P6
1 7 P0-10-P Ii1t-11 -P21I-t2 I -P3 I-t3 I -P4i -141 -P5[42-t24-P34-'134-P44-144P5452-t25-P35t35-P45S-t45-P55t5-P6
1 8 PO-10-PI 2-t I 2-P22 I1-t2 I P3I 1-3 I -P41 -141-P.5 142-t24-P341t34-P44-t44-P5452-t25-P351i-35-P45-t45-P55-15-P6
19 P~rO-tO-Pi 1 1 t -P21 2-t22-P32-132-P42-t 42-P.5242-t 24-P34-t34-P44-t44-Ps4s52-125-P3 .s-t~ls-P4s-14s.5 s1-P55tiP
20 PO-tO-P I2-t1i2P22-t22-P32-t32-P42-t42-P5242t(24-P.34-t34-P44-t44-P54j2-t25iP35-t35-P45-t45-Ps5-tsP

6
2 1 P0-to-P I I -t I -P2 I-t21I -P.11 -(31 -P41 -141 -P5132-t 23-P331-t33-P43-t43-Ps343-t 14-P 44-t 44 -Ps4 52-t2s-P 35-t,15-P 4 5-t4 5-P5 5-

ti-P6
22 P010OP I 2-tI 2-P221 -t21 P3I -3 I -P41 -141 -Ps5I 32-t23-P33-133-P431-t43-P5343-l.44-P 44-t 44-P5452-12 s-P35-t.35-P4 5-t4 .5-P5 5-

tS-P6
23 PO-tOP II -tI I -P21 2-t22-P3 2-t32-P42-142-P5232-t23-P33-t33-P43d-43-P5343-t34-P 44-t44 -P5452-t 2 ,5 -Pls-t 3s-P 4 s-t45 -P55 -

t5-P6

25 pO-to-p I I-t I -P2 I-121 I P3 1 -1 1 P41 -4l -5 142-t24-P34-(34-P44-t44-PS432-l23.-P33-t33-P43-t43-P535 3-t13s-P4s-t45-Pssi-
1ý5P6

26 POtO-P I 2-t 2-P221 -t21I -P31I-t31I -P41-141-P5 142-t 24-P34-t 34-P44-t 44-Psi432-t23-P33-t133-P431-t43-P5353-t 35-P4s-t 4s-P~s5 -
t1S-P6

27 P0-to-P I I-tI I -P21 2tl-2P32-t32-P42-t42-P5242-t24-P.34-t34-P44-t44-P5432-tl23-P.33-t33-P43-t4r-P535.3-t35iP4s-t4s-Pss*
t 5-P6

28 POtO-P I 2-112P2t2P2t2P2-4-54-2-3-3-4-4-43-2-3-3-4t4P5.33-4-4-P -

29 PO-10Pi i~I I - -P21 -t21 -P31I-t3 I -P41I- 141 -Psi152-t12VP.i,35-13P45-t45-P5i42-t24-P34-t.34-P44-(44-P54-ti-P6
310 PoOtOP I 2-li12-P22 I -t21 -P31 -t1 I1 -P41 -141-Ps I 52-125.P35t135-P4,5145-P55421t24-P34-t134P44-t44-P54-t5-P6
31 P0-to-P II -tI I -P21 2-t22-P32-t32-P42-t42-P5252-t25-P35-t35-P4V1-45-P5542-t24-P34-134-P44-t44-P54-t.S-P6

33 PO-10-P II-ti I I-P21 -t21 -P-31I-t.3I -P41-141I-P5 I 32-t2.3P33-t33-P43-t43-P5353-t35-P45-t45-P5542-t2 4 -P34-t 3P 4 4 -t44 -P54-

34 P0-to-P I2-t I 2-P22 I1-t2I -P3 I-t31 P411-41 P5 I 32-t2lP33-t13-P43-t43-P5353-t3.5P4.5-45-P5542-t 24-P34-t 34-P44 -t44-P54
t5sP6

-3 - POO-Pi I I-tI I -P21 2122-P32I(32-P42-t4-P5232t23-P33I133P431t43-P535Y3-t5iP45-t45-P5542-t 24-P34-t 34-P44 -t44-P5 4-

38 POtO-P I 211 2P221-121- p31d31 -P41 4 ' 212-3-2-~-t42-psi32-t23-pl3-t33-p43-t43-ps 3 4.3-t 3 4 -p4t5P54-t4P 4 -t4- 4 4-"P~i4 -

37 PO(o-P I I-t I I -P21 -2l -P.32I4-32Il-412-tl4-P525~2-t2.5-P35-t35-P45-t4s-P55i32-t23-P33-t33-P43-t4.3-P5343-t34-P44-t44-Psi4-

40 PO. 10-P I I2-12P22-122-P32-112P421t42-P5252-t25-P35t 3 5-P4V1t45P5532-t23-P33-t.33 P43-14 3 -N5343-l34-P44-t44-P54-

- 24 -

If we specify that the response time of the organization has to be less than 80 seconds and that
the delays associated with each processes are defined as follows:

to = 0
ISA = ti I=l10 tIFI =t2 = 5 tCI = t3jO= tRSI =t4lO=1

tSA2 =t 12 =10 tIF2 = t22 = 5 tC It = t32 =0 tRS2 =t4 2 = 10
tIF3 =t 23 = 10 tCI3 =t33=O0 tRS3 =t43 = 10
t1F4 =t 2 4 = 10 ti 4 = t34 =5 tRS4 =t44 = 10
tIF-5= t2 5 = 10 tCI5 =t35 =5 tRS5 =t45 = 10

t5=0

The delays associated with each simple path are:

TI = tO + tI I + t2l + t31 + t41 + t24 +t34 +t44 +t5 = 50
T2 =tO +t12 + t21 + t3l + t4l +t24 +t34 +t44 +t5 = 50
T3 =tO+ ti +t22+t32 +t42 +t24+ t34 +t44+t5 =50
T4 = tO + t02 + t22 + t32 + t42 + t24 + t34 + t44 + t5 = 50
T5 = tO +tI I + t21 + t31 + t41 +t23 + t33 + t43 + t34 +t44 +t0 =60
T6 =tO + t12 +t21 + t31 + t4 +t23 +t33 + t43 + t34 +t44 +t5, =60
T7 =tO +tI I + t22 +t32 +t42 +t23 +t33 +t43 +t34 +t44 +t5 =60
T8 = tO + t 12 + t22 + t32 + t42 + t23 + t33 + t43 + t34 + t44 + t5 = 60
T9 =tO +tl 1 + t21 + t31 + t4 +t25 + t35 + t45 + t5 =50
TIO =tO + 02 +t21 + t31 + t41 +t25 + t35 + t45 + t5 =50
TI =tO+tl I +t22+t32+t42+t25+t35 +t45 +t5=50
T12 = tO + t12 + t22 + t32 + t42 + t25 + t35 + t45 + t5 = 50
T13 = tO + t I + t21 + t3l + t4l +t23 + t33 + t43 + t35 + t45 +t5 =60
T14 =tO +t12 + t21 + t3l + 4l + t23 + t33 + t43 + t35 + t45 + t5 =60
T15 = t,(+ tI I + t22 + t32 + t42 + t23 + t33 + t43 + t35 + t45 + t5 = 60
TI16 = tO + t] 12 + t22 + t32 + t42 + t23 + t33 + t43 + t35 + t45 + t5 = 60
T17 = tO + ti I + t21 + t31 + t41 + t24 + t34 + t44 + t25 + t35 + t45 + t5 = 75
T18 =tO + 02 +t21 + t31 + t4 + t24 +t34 +t44 +t25 +t35 + t45 + t5 =75
T19 = tO + tI I + t22 + t32 + t42 + t24 + t34 + t44 + t25 + t35 + t45 + t5 = 75
T20 = tO + t02 + t22 + t32 + t42 + t24 + t34 + t44 + t25 + t35 + t45 + t5 = 75
T21 = tO +tI I + t2l + t31 + t4 +t23 + t33 + t43 + t34 +t44 +t25 + t35 + t45 + t5 = 85
T22 =tO +t12 +t2l + t31 + t4 + t23 + t33 + t43 + t34 +t44 +t25 + t35 + t45 + t5 =895
T23 =tO +tiI + t22 +t32 +t42 +t23 +t33 +t43 +t34 +t44 +t25 +t35 +t45 +t5 =85
T24 = tO + t 12 + t22 + t32 + t42 + t23 + 033 + t43 + t34 + t44 + t25 + t35 + t45 + t5 = 85
T25 = tO +tl I I + t21 + t31 + t41 +t24 +t34 +t44 +t23 +t03 + t43 + t35 + t45 + t5 =85
T26 =tO +t02 +t21 + t3l + t41 +t24 +t34 +t44 +t23 + t33 + t43 + t35 + t45 + t5 = 85
T27=tO+tl I +t22+t32+t42+t24+t34+t44+t23+t33 +t43 +t35 +t45 +t5 =85
T28 =tO +t 12 +t22 +t32 +t42 +t24 +t34 +t44 +t23 +t33 +t43 +t35 +t45 +t5 =85
T29 =tO +t I I +t(21 +tOf + t41 + t25 + t35 + t45 + t24 +t34 +t44 +t5 =75
T30 = tO + t 12 + t21 + t31 + t41 + t25 + t35 + t45 + t24 + t34 + t44 + t5 = 75
T31 =tO+tl I +t22+t32+t42+t25+t35 +t45 +t24+t34+t44+t5 =75
T32 =tO +tl2 + t22 +t32 +t42 +t25 +t35 +t45 +t24 +t34 +t44 +t5 =75
T33 = tO + t I + t21 + t3 + 41 + t23 + t33 + t43 + t35 + t45 + t24 +t34 +t44 +t5 = 85
T34 =tO +t12 +t2l + t31 + t4 + t23 + t33 + t43 + t35 + t45 + t24 +t34 +t44 +t5 = 85
T35 = tO + tI I + t22 + t32 + t42 + t23 + t33 + t43 + t35 + t45 + t24 + t34 + t44 + t5 = 85
T36 = tO + t 12 + t22 + t32 + t42 + t23 + t33 + t43 + t35 + t45 + t24 + t34 + t44 + t5 = 85
T37 = tO + tlI 1+ t21 + t31 + t41 + t25 + t35 + t45 + t23 + t33 + t43 + t34 + t44 + t5 = 85
T38 =tO +t12 +t2l + t31 + t4l +t25 + t35 +t45 + t23 + t33 + t43 + t34 +t44 +t5 = 85
T39 =tO +t I I + t22 +t32 +t42 +t25 + t35 + t45 +t23 +t33 + t43 + t34 +t44 +t5 =85
T40 = tO + t02 + t22 + t32 + t42 + t25 + t35 + t45 + t23 + t33 + t43 + t34 + t44 + t5 = 85

- 25 -

One can see that 14 simple paths: 21, 22, 23, 24, 25, 26, 27, 28, 33, 34, 35, 36, 37,38, 39,
and 40 have an associated delay of 85 seconds, and therefore any generated structure
containing at least one of these simple paths will have a response time of 85s which is larger
than the 80 seconds required. These simple paths need therefore to be discarded and the Lattice
Algorithm will construct the feasible structures by combining the 26 remaining simple paths.

The resulting set of solutions will be smaller. For example, MAXO M2 displayed in Figure 17
contains Simple Paths 33, 34, 35 and 36 that have been discarded. The violation of the
response time requirements comes from the fact that DMU 4 has to wait for DMU5 to produce
its response before starting its task. By subtracting these Simple Paths, a new MAXO M'2
satisfying the response time requirement is obtained and is displayed in Figure 20.

Figure 20 New MAXO M'2

User-Defined Rules
User-defined rules include different heuristics used by the architecture designer to describe
characteristics of the envisioned architecture. Some of them translate directly into the settings to
I or 0 of some cells of the connection matrices. In the example described in section 3, the fact
that "DMUI has to send his information to DMU 3" results in setting to I the cell H13.

Currently the Lattice Algorithm does not allow the taking into account of conditional links of
the kind: "if interaction Xij exists then the interaction Yjk exists" or "either link Xij or Yjk
exists." An approach is proposed to use techniques from Integer Programming (IP) to translate
conditions and logical relations on interactions into constraints that will be checked by the
Algorithm. Let us look at two examples illustrating two IP techniques:

a)Either-Or constraints

In a linear program where we want to ensure that at least one of the two constraints
f(x1 , x2. ... Xn) <- 0 and g((x 1 , x2, ..., xn) < 0 is satisfied, we use the following IP

formulation:

- 26 -

f(x1, X2 xn) <5 yM
g(XlI, X2 Xn) <ý (I-y)M

where: y = 0 or I and M is large enough so that
f(xI, x 2 .. . x0) < M and g(x1 , x2 ... , xn)!< M
for all values of x l, x2 ... , xn.

The statement "either link Fij or Hij exists" is equivalent to the statement "either I-Fij < 0 or I-
HiJ _ 0" that can be formulated as:

I - Fij_< y
I - Hij !5 (1-y)
where y, Fij, Hij {0,1}. (M=I is large enough).

By adding these two inequalities, we can eliminate y and we get:

Fij + Hij > I

It is impossible to have both Fij = 0 and Hij = 0. This type of constraint can be added to the set
of constraints checked by the Lattice Algorithm.

b) If-Then constraints

When a situation occurs where we want to ensure that if a constraint f(x1 , x2, ... , Xn) > 0 is
satisfied then the constraint g(xi, x2, ... , Xn) -> 0 is satisfied, the following formulation in IP
is used:

-g(xI, x2 ... ,Xn) <- My
f(x 1, X2, ... , Xn) < M(O - y)

where: y = 0 or I and M is large enough so that
f(x1, X2 Xn) <ý M and - g((xj, X2 Xn) < M
for all values of xl, x2, ..., xn.

The statement "If interaction Fij exists then interaction HkI exists" is equivalent to the statement
"if Fij > 0 then Hki -1I Ž 0" that can be formulated:

-(Hkl - 0) ! y
Fij <_ (I - y)

where y, Fij, Hki G 10,11. (M=l is large enough).

By adding these two inequalities we can eliminate y and we get:
Fij - Hki • 0 where Fij, HkI E 10, 1.

The interpretation is as follows:
If Fij = 0 then Hki = 0 or Hk1 = I
If Fij = I then Hkl = I

which is exactly what is required.

Let us generalize this approach to more complex constraints. In what follows, capital letters (A,
B, ...) denote cells of the connection matrices e, s, F, G, H or K. A indicates that the
connection A must exist (A= i). -'A indicates that the connection A must not exist (A--0). User

- 27 -

defined constraints can then be expressed in terms of a logical formula that uses the operators
- (not), A (and), v (or), -* (implies / if-then).

These operators have the following properties:

"A A(B A C) = (A A B) A C = A A B A C A-associativity
"A v (B v C) = (A v B) v C = A v B v C v-associativity

"A A (B v C) = (A A B) v (A A C) A-distributivity

"A v (B A C) = (A v B) A (A v C) v-distributivity
A --> B = -A v B

-,(A A B) = -' A v -,B DeMorgan's Laws

-'(A v B) = -A A -,B

Using these properties, any logical formula can be transformed into a Conjunctive Normal
Form where the formula is expressed as the conjunction (operator A) of disjunctions (operator
v). For example (A v B) A (-,A v C) A (B v -'D v E) is a conjunctive normal form because
expressions containing only operators v are connected with operators A. The first step of the
approach is therefore to transform the user specified constraint into a Conjunctive Normal
Form. Each of the disjunctions of the resulting expression can then be processed
independently. A disjunction contains a finite number (m) of positive literals and a finite
number (n) of negative literals. Its generic form is:

-,AI v -,A2 V ... v -,An v An+I v An+2 V ... V An+m

which, by using v-associativity, can be rewritten as:

(-A I v -A2 V ... v -An) v (An, I v An+2 V ... v An+m)

and by using the first DeMorgan's law:

-(Al A A2 A ... A A.) v (An+, v An+2 V ... v An+m)

Finally, this formula can be rewritten:

(Al A A2 A ... A A) -- (An+, v An+2 V ... v An+m)

Any user defined constraints can be expressed in terms of rules of this type.

Let us now use the IP formulation to derive the equation to be included in the set of
constraintsd checked by the Lattice Algorithm:

For Al A A2 A ... A An to be true, every Ai needs to equal I and therefore, we must have: A,
+ A2 + ... + An=n.

Similarly, for An+, v An+ 2 V ... v An+m to be true, at least one of the An+j has to equal I and
therefore, we must have:

- 28 -

A.+1 + An+2 +... + An+m >- I

To use the "If-Then" IP formulation, these two equations need to be rewritten as:

A, +A 2 +...+An-n+I >0
An+1 + An+2 + ... + An+m - 1 _ 0

and therefore, the formulation is as follows:

-An+I - An+2 - ... - An+m +I < My
A, + A2 + ... + An- n+l < M(1 - y)

where: y = 0 or I and M is large enough so that

-An+1 - An+2 -... - An+m +1 < M and A, + A2 +... + An - n+l < M

for all values of A,, An+m •

M = I is large enough and we have:

-An+] - An+2 - ... - An+m +l < yA, + A2 + ... + An - n+l <5 1 - y

By adding these two inequalities to eliminate y, we obtain:

AI + A2 + ... + An - n+ 1< An+1 + An+2 + ... + An+m

If Al A A2 A ... A An is true then Ai = I for all i and the equation becomes:

1 A,+, + An+2 + ... + An+m,

requiring that at least one of the An+j = I.

If Al A A2 A ... A An is false then there exists an i in {1, ..., n) such that Ai = 0 and
therefore:

AI + A2 + ... + An - n+I < 0 5 An+l + An+2 + ... + An+m

and the An+t can take any values.

The interesting aspect of this approach is that it generates constraints that can be easily checked
by the Lattice Algorithm, in the same way it checks constraints R3 and R4.

4.2.2 Deadlocks and Traps

A detailed introduction to the issues involved in this task have been presented in the last
progress report together with a brief description of the algorithm for calculating the deadlock
and traps for a general Petri Net structure. The algorithm has been finalized during this
reporting period and extended for Hierarchical Petri Net structures. As a result Ms. Jin has
completed her Master's thesis, and a technical report containing the algorithms and their
application will appear soon. A detailed description of the deadlock and trap algorithm is

- 29 -

presented in this report. The extension of this algorithm to Hierarchical Petri Nets will appear
in the technical report.

Algorithm

Given a net N = (P, T, 1, 0), n = I P I, m = I T I, the extended incidence matrix of the net N is
C. In is an identity matrix with dimension equals to the number of places in the net N. The
algorithm starts by constructing the matrix [In , C] and evolves to [Di, R1]. [In , C] will be
modified by linear combinations of its rows. Matrix Di includes place sets of deadlock
supports of net Ni, where Ni denotes the net obtained by taking transitions tl t1 into
account in the PPR matrix (already described in the previous report). Matrix Ri represents the
PPR matrix that originated from the extended incidence matrix. In short, [Di, Ri] is the matrix
obtained after the i-th iteration in the following algorithm. After the m-th iteration, Dm includes
the deadlock support for the net Nm, which is the net N, and Rm shows the PPR matrix of
certain place sets in net N. Some redundancy in the statement of the deadlock supports may
occur. They will be eliminated in the algorithm.

Deadlock Algorithm

Step I Initialization:

Construct the matrix I In , C].
LetDo=In ;Ro=C; i=0,
Initial Checking:
Check all rows in [Do , Ro] to determine if there is a row r that has all its R0 matrix
elements Rrj (j= I to m) be negative or zero, if so, append this whole row r to the
matrix [Do, R0].

Step 2 Iterations

Repeat for i = I to m (m is the number of transitions in net N)
- Determine J = I j I Rji > o } and K = { k I Rki < 0}

- For each (j, k) of J x K, add row j and row k in [Do, R0] element by
element. The adding operation of Di-, matrix and Ri-! matrix follow D
matrix union rules and PPR union rules, respectively; then append the
resulting rows to the matrix [Di-1 , Ri-!].

- Suppress all the rows in J in which elements Rjj >0 (j E J).
- Eliminate from [Di, Ri I the identical rows. Two rows are identical if and

only if every element in one row in matrix Di-I has the same value as the
corresponding element in another row in Di-1.

- Now we have a new matrix [Di, Ri].
- Go to the Repeat statement.

Step 3 Check

Check rows in matrix [Dm, R. 1. Find out those rows in Rm in which every element in
the row is either negative or zero. The corresponding rows in Dn represent the place
sets of deadlock supports. If there are no such rows in Rm, then this net does not have
any deadlock supports, which means there are no deadlocks in this net.

Step 4 End of the Algorithm.

- 30-

If we need to determine minimal deadlocks, then we can eliminate those place sets that have
subsets in each iteration in Step 2, and finally all minimal deadlocks can be determined after the
end of the algorithm.

Pre-defined Operation Rules
Because the purpose of using Matrix Di (i=l, ..., m) is to keep track of the places in a place set
that could be the deadlock support of the net Ri during each iteration, the union operation on
matrix Di is basically the union operation of Set theory. Therefore, the union operations on
elements in Matrix Di are defined as follows:

I. Operation rules on elements in matrix Di:

a. I + I = 1,0+0=0,1+0=1
b. These rules are commutative.

2. PPR Union Operation rules for matrix Ri:

The operation on elements in Matrix Ri (i=l ... m) are used to compare the preset
and postset of a place or a place set. Each time a transition is added, the preset and
postset relations may change. The operation rules for matrix Ri are used to keep
track of the preset and postset relations whenever a new transition is added. These
rules are defined as follows.

1. 1 + 1 = 1; 6 (-1)+0=-1;
2. 0+ 0 --0; 7 (-2) + 1 =-1;
3 1 +0= 1; 8 (-2) + (-I) =-1;
4 (-0) + (-l) =-I; 9 (-2) +0=-I;
5 (-1)+ 1 = -1; 10 (-2) + (-2) = -I

Interpretation of Results
The final rows in matrix D are the place sets of the deadlock supports. If we need to find all
deadlocks including those that have deadlock supports and those that don't, one way to do this
is to consider all combinations of deadlock supports. The result should be all the possible
deadlocks. Another important task is to find the minimal deadlocks in matrix D. To achieve
this, all we need to do is to compare the rows in the final matrix Din. Those place sets that
contain no other subsets are the minimal deadlocks.

Calculating Trap Supports
To calculate the trap supports in an ordinary Petri Net, we need to find out the place sets whose
preset is the superset of its postset.

Example: Given a strongly connected free choice net N shown in Figure 21:

p1 p3

p2 P4

Figure 21 A Strongly Connected FC Net

-31 -

* a

Follow the algorithm steps described. Each step is shown in two parts as follows: The left
hand side shows the matrix iterations, and the right-hand side shows the net Ni that
corresponds to i-th iteration. The dashed-line box shows the columns and rows in the current
iteration.

Step I : Initialization

"* Construct matrix [In, C). C is the extended incidence matrix of net N,
In is the identity matrix, n = I P I. See Figure 22.

"• Let Do = In, Ro= C.
"• Do represents the deadlock supports of No (with no transitions)

" Check all the rows in [Do, Ro]. There is no row with all its R0 matrix elements
negative or zero. So no rows are appended to the matrix [DO, R0].

In C p1 p3

p1 1 0 0 0 -1 1 0 rowl 0I0

p2 0 1 0 0 1 -1 0 row 2

p3 0 0 1 0 0 1 -1 row3 030

p4 0 0 0 1 0 -1 1 row 4 p2 p4

Do R0 N0

Figure 22 Initialization -- Example

Step 2 : Iterations :

Iteration I: Add transition t I to net NO; the deadlock supports are shown in matrix D1.
RI shows the preset-postset relation . See Figure 23.

* J= {jlRjI >0)= {2),

* K=f klRk <01= MI

S J x K = {(2, 1)),

Add the two rows in J x K (according to Di matrix union rules and the
Ri PPR union rules), then append the resulting row 5 to the matrix
[DO, Ro].

* Suppress the rows in J, which in this case the only row is 2.

* There are no identical rows in [D1 , R, 1, so there are no rows to be
eliminated.

Matrix D, contains the deadlock supports of net NI. They are (pl I,
(p3 1, (p4), and (p1, p21. Iteration I is summarized as follows:

-32-

a a

In C P1 p3* l
,' " "-. ...-' ": "".". ":......- ". 0
p2.- row 2 t... :......,,:. . . ,. . ..,. ro 2

p3 0 0 1 0 ::0 1 -1 row 3

P [o 0 o 1 -1 1 row 4 0
1 1 0 0 -1 -1 0 row 5

D1 R1 N1

Figure 23 Iteration I-- Example

Iteration 2: Transition t2 is added to net N, to obtain net N2, as show in Figure 24.

* J= {jlR-2 >0 J= 1{,3},
* K= { kICk2 <0}= {4,5 },
* J x K = ((1, 4), (1, 5), (3, 4), (3, 5));

* Add rows in J x K respectively (follow Di matrix union rules, and Ri
PPR union operation rules), append the results as row 6, 7, 8 and 9 to
the matrix [Di, RI].

• Suppress rows in J, which in this case are row I and row 3.
• Row 5 and row 7 are identical, so row 5 is eliminated.
* Now we have [D2, R2], D2 contains the deadlock supports of net

N2, they are
{p4), (pl, p4}, {p1, p2), (p3, p4), and {pl, p2, p3). Iteration 2
is summarized as:

In
'......................... " - - ".............:" :"7" o

p2 1 0 0 : row I

p2 n I n n I _ - n row 2

S....................
P3n o..owp3

1 0 0 1 :-1 -1 1 row 6

1 1 0 0 -1 -1 0 row 7 p7p

0 o 1 1 0 -1 -1 row 8--------------------------- -------- 1ný--------.N
1 1 0 0 -1 -1 -0 row 7

D2 R2

Figure 24 Iteration 2 -- Example

Iteration 3 : Transition t3 is added to the net N2 to obtain net N3. See Figure 25.

- 33 -

* J= { j I Rj 3 >O0 = 14,6,1,

K K={ kiRk3 <0)=18,91,

J x K = 1(4, 8), (4, 9), (6, 8), (6, 9));

Add rows in J x K respectively (according to Di matrix union rules,
and Ri PPR union rules), append the results row 10, row 11, row
12 and row 13 to the matrix [D2, R2].

* Suppress rows in J, which in this case is row 4 and row 6.

* Row 13 and row 11 are identical, so are row 8 and row 10, so row
10 and row I I are eliminated.

Now we have [D3, R 3]. D 3 contains the deadlock supports of net
N3 they are

{pl, p2}, {p3, p4}, and {p1, p2, p3), {p1, p3, p4}, and (p1, p2,
p3 , p4 }.

In C
pl 1 n n n : .I n : rowl

p2 n~ 1 0 0 "1 14 0:jrn
p2 .. row 2

.3 Q n I n "n I :- row3

1 1 0 0 " 1 -1. 0.: row7•t
0.........1 1 0 -1 -. 1. row8t

*1.......1 0 ___1_ ".______o_9__
p4 row Em

1 1 1 1 .t t .t row 5

-. d0 j 1 -1 -1 - row 12

1 1 0 0 -1 -1 -1 row 713

............ -- -- -- - - - - - - - -.... N 3

1itraow I -- Ea p2

Results: The final matrix of [D3, R31 is presented in Figure 26.

- 34-

In C
p1" 1 0 -

p2 - ; , 1 a I

p:3 -... e: 0 0 e i, ; -i

,.., u v , . v -,

1 0 0 1 -1 -1 1

1 1 0 0 -1 -1 0

0 0 1 I 0 -1 -1

1 1 1 0 -1 -1 -1

1 0 1 1 -1 -1 -1
I 1 1 1 -1 -1 -1

D3 N3

Figure 26 Result -- Example

The final rows in D3 are the followings:

{I1 100}=>(pl,p2 ; (0011 }=> {p 3 , p4)
11 l }=>{pl,p2, p3}; (1011 }=> pl, p3, p4}
SI I I }=> I p1, p2, p3, p4 }

The minimal deadlocks are:

{p1, p2) and (p3, p4}.

The following are traps and their supports:

I 100}=>{pl, p2); (001 1)=>{p 3, p4)
I 10 1 =>{ p I, p2 , p4) ; 10 11) => { p2, p3, p4)
I 11 1 => { p, p2, p3, p4}

These place sets are all the trap supports of net NI of Figure 21. The minimal traps are (pl,
p2) and (p3, p4}.

This algorithm is now part of the tool set needed to design and analyze variable structure
organization.

4. 3 SUMMARY

The emphasis during the first year of this project has been on fundamental research - the
modeling of some abstract problems and the development of algorithms for their solution. With
the completion of Ms. Rashba's Master's Project, Ms. Jin's Master's Thesis, and with the
results being obtained by Mr. Zaidi for his PhD Thesis, we are now in a position to begin
addressing coordination problems in variable structure organizations. The implementation of
the results presented in Section 4.2.1 will complete that particular task and will allow us to
refocus it on human decision making.

- 35 -

4.4 REFERENCES

Andreadakis S. K. (1988). "Analysis and Synthesis of Decision-Making Organizations."
LIDS-TH- 1740, Laboratory for Information and Decision Systems, MIT, Cambridge,
MA.

DeJong G., Mooney R. (1986) "Explanation-Based Learning: An alternative view," Machine
Learning 2.

DeJong G., Mooney R. (1990) "Explanation-Based Learning: An alternative view," in
Readings in Machine Learning, Shavlik, J. W., Dietterich T. G. (eds), Morgan
Kaufman.

Demael J. (1989). "On the generation of Variable Structure Distributed Architectures." LIDS-
TH- 1869, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Hillion H (1986). "Performance Evaluation of Decision Making Organizations Using Timed
Petri Nets." LIDS-TH-1590, Laboratory for Information and Decision Systems, MIT,
Cambridge, MA.

Levis, A. H. (1993). "A Colored Petri Net Model of Command and Control Nodes," in
Toward a Science of Command Control and Communications, Carl R. Jones, Ed.,
AIAA Press, Washington, DC.

Lu Z. (1992). "Coordination in Distributed Intelligent Systems." GMU/C31- 120-TH, Center of
Excellence in Command, Control, Communications, and Intelligence, George Mason
University, Fairfax, VA.

Mitchell T. M., Keller R. M., Kedar S. T. (1986) "Explanation-Based Generalization: A
Unifying View," in Machine Learning 1, pp. 47-80.

Mitchell T. M., Keller R. M., Kedar S. T. (1990) "Explanation-Based Generalization: A
Unifying View," in Readings in Machine Learning, Shavlik, J. W., Dietterich T. G.
(eds). Morgan Kaufman.

Monguillet J.-M. (1987) "Modeling and Evaluation of Variable Structure Organizations."
LIDS-TH-1730, Laboratory for Information and Decision Systems, MIT, Cambridge,
MA.

Remy P. (1986). "On the Generation of Organizational Architectures Using Petri Nets." LIDS-
TH-1630, Laboratory for Information and Decision Systems, MIT, Cambridge, MA.

Remy P. and Levis A.H. (1988). "On the Generation of Organizational Architectures Using
Petri Nets." in Advances in Petri Nets 1988, Lecture Notes in Computer Science, G.
Rozenberg Ed. Springer Verlag, Berlin, Germany.

Tecuci G. (1993) "Explanation-Based Learning," Lecture Notes in Machine Learning,
Computer Science Dept., George Mason University.

Zaidi S. (1991). "On the Generation of Multilevel Distributed Intelligent Systems Using Petri
Nets." GMU/C31-l12-TH, Center of Excellence in Command, Control,
Communications, and Intelligence, George Mason University, Fairfax, VA.

- 36-

5.0 MEETINGS

* Ms. Jenny Jin successfully defended her thesis in April 1994.
* Dr. Levis attended the 1994 Symposium on C2 Research, Monterey, CA.

6.0 CHANGES

No changes in the scope of work of this project.

7.0 RESEARCH PERSONNEL

7.1 Research Personnel - Current Reporting Period

Prof. Alexander H. Levis Principal Investigator

Mr. Didier Perdu Graduate Student (Ph.D.)
Mr. Abbas Zaidi Graduate Res. Assistant (Ph.D.)
Ms. Jenny Jin Graduate Res. Assistant (MS)

7.2 Research Personnel - Previous Reporting Periods

Prof. Alexander H. Levis Principal Investigator
Prof. K. C. Chang

Mr. Didier Perdu Graduate Student (Ph.D.)
Mr. Abbas Zaidi Graduate Res. Assistant (Ph.D.)
Ms. Jenny Jin Graduate Res. Assistant (MS)
Ms. Hedy Rashba Graduate Res. Assistant
Ms. Azar Sadigh Graduate Res. Assistant
Ms. Cynthia Johnson Graphics Designer

7.3 Personnel Changes

Prof. K. C. Chang does not have any current tasking in the project, but is available to consult
on algorithmic matters, if the need arises.

Ms. Jin completed her degree requirements and graduated. She is now pursuing her PhD at
George Mason University in Software Systems Engineering.

Ms. Rashba completed her degree requirements and graduated. She is now working as an
analyst at ANSER Corp., Arlington, VA.

Ms. Cynthia Johnson left the C31 Center to return to industry after only several weeks of
employment. She has not been replaced.

8.0 DOCUMENTATION

I. Hedy L. Rashba, "Problems in Concurrency and Coordination in Decision Making
Organizations," Report GMU/C31-143-R, C31 Center. George Mason University,
Fairfax, VA. September 1993.

2. Zhenyi Jin, "Deadlock and Trap Analysis in Petri Nets," MS Thesis, Systems Engineering
Department, George Mason University, Fairfax, VA, May 1994.

- 37 -

